Хранители времени. Реконструкция истории Вселенной атом за атомом
В XVII веке появился фундаментально новый подход к обретению «знания» – по-латински scientia, как в сентенции Фрэнсиса Бэкона, прозвучавшей в 1597 году: Nam et ipsa Scientia potestas est («Итак, знание само по себе – сила»). Подход Бэкона требовал проведения экспериментов (наблюдения и измерения), а также индуктивного мышления для построения моделей естественного мира. Эмпирический подход к знанию имел прецеденты в философских школах Канады (о котором мы говорили выше) и греческих стоиков, а также в трудах исламского мудреца Авиценны, но появление моделей, явно доступных проверке при помощи опытов, ознаменовало совершенно новый подход к пониманию природы. Например, вывод Аристотеля (сделанный на чисто умозрительной основе), согласно которому тяжелые вещи падают быстрее легких, признавался на протяжении двух тысяч лет – и был опровергнут за тридцать секунд при помощи одного-единственного эксперимента: это произошло в 1586 году, когда Симон Стевин бросил два шара из Свинца, один из которых был в десять раз тяжелее другого, с церковной колокольни в Делфте и увидел, как они ударились оземь одновременно8.
Появление науки об атомах
За два столетия современная наука (1600–1800) достигла немалого прогресса: удалось опытным путем установить, что у каждого вещества была мельчайшая единица, отражавшая все его свойства. Эксперименты Роберта Бойля с газами показали, что четыре аристотелевских «элемента» были вовсе не элементарными. Некоторые из них, например воду, можно было разложить на другие вещества – в случае воды на Кислород и Водород; впрочем, разъединить эти составляющие дальше не получалось. Как утверждал Бойль, именно последние вещества следовало называть элементами. В конце XVIII века Антуан Лавуазье, блестящий химик, чей творческий путь оборвала французская гильотина, первым установил, что в ходе химических реакций не происходит потери массы, и это навело его на мысль, что сами реакции представляли собой просто перераспределение вовлеченных элементов. Лавуазье, наряду с Джозефом Пристли, выделил Кислород как особенно химически активный элемент, и к 1789 году (при неизменной поддержке своей жены, Марии-Анны Польз) составил список из тридцати трех элементов, которые не удавалось разложить на составляющие никакими химическими средствами9. Некоторые из элементов в этом списке (например свет и теплород) отражали недостаточное знание физики в ту эпоху, а другие, по сути, оказались сложными структурами из нескольких элементов, в те времена еще не разложенных на составляющие (к таким, например, относились барит, или тяжелый шпат, – минерал, представляющий собой соединение Бария, Серы и Кислорода [BaSO4], и кремнезем [SiO2]). Но указанные у Лавуазье Водород, Углерод, Азот, Кислород, Сера, Фосфор и более десятка металлов украшают Периодическую таблицу и в наши дни.
На заре XIX столетия были сделаны очень важные шаги, направленные на количественное измерение и заложившие основу для современной атомной теории вещества. Джон Дальтон установил, что сложные структуры возникали из сочетаний элементов, соотношения которых всегда были четко зафиксированы в плане веса; иными словами, 2 грамма Водорода всегда сочетались точно с 16 граммами Кислорода для образования воды. Это позволило высчитать относительные веса нескольких известных элементов, и тем самым Дальтон стал главным предвестником создания Периодической таблицы химических элементов, которую разработал Дмитрий Иванович Менделеев (см. гл. 4).
Примерно в то же время Лоренцо Авогадро установил, что равные объемы газов (при одинаковом давлении и температуре) содержат одинаковое количество атомов/молекул. Более того, он постулировал различие между атомами (назвав их «элементарными молекулами») и молекулами, составленными из различных элементов (отличие, которое упустил из виду Дальтон). К середине века Менделеев распределил шестьдесят три элемента, известных в то время (некоторые из тех, в которых прежде сомневались, уже были устранены), в Периодической таблице, что, в свою очередь, позволило предсказать наличие элементов, которые еще только предстояло открыть. 6 марта 1869 года Менделеев представил свою статью «Соотношение свойств с атомным весом элементов» в Русское химическое общество. Так возникли современная химия и атомная модель, лежащая в ее основе.
Но о размерах и массе отдельных атомов химики имели такое же представление, как Левкипп или Лукреций. Ясно было только одно – то, что атомы были слишком маленькими, чтобы их увидеть. И пока большинство химиков продолжали свои поиски, стремясь открыть новые элементы и систематизировать знания о уже известных, многие физики XIX столетия по-прежнему пребывали в убеждении, что атомов не существует. Французский ученый Пьер Эжен Марселен Бертло, занимавший пост министра иностранных дел, зашел так далеко, что запретил преподавание атомной теории во Франции. Даже в 1897 году Эрнст Мах, уроженец Чехии, присутствуя на презентации, где Людвиг Больцман представлял свою кинетическую теорию атомов и молекул в газах, откровенно заявил: «Я не верю, что атомы существуют»10. Впрочем, создается впечатление, что его возражения были в большей степени философскими, а не основанными на физике.
Первые данные о размере и массе атомов появились в 1827 году, и пришли они из источника, который многие сочли бы маловероятным: от шотландского ботаника Роберта Брауна. Проводя исследования по опылению растений, он взвешивал пыльцевые зерна в воде, наблюдал за ними в микроскоп и увидел, что зерна представляли собой «частички… очевидно пребывающие в движении». Вместо того чтобы заключить, что это беспокойное движение было проявлением «жизненной силы», он повторил эксперимент сперва с пыльцевыми зернами, которые на протяжении одиннадцати месяцев выдерживались в алкоголе (после чего можно было с уверенностью сказать, что они мертвы), а потом – с камешками, истолченными в порошок. Одно и то же хаотичное движение наблюдалось во всех случаях. Браун наблюдал не что иное, как совокупный эффект случайных столкновений отдельных молекул воды с взвешенными частицами – несколько дополнительных соударений слева перемещали частичку вправо, а пара толчков снизу, следующих за ними, заставляла ее сдвинуться вверх на предметном стекле11.
Как ни удивительно, Лукреций предвидел этот исход и его интерпретацию, предполагающую участие атомов, еще примерно за две тысячи лет до описываемых событий, и отразил это в книге «О природе вещей»:
Вот посмотри: всякий раз, когда солнечный свет проникает
В наши жилища и мрак прорезает своими лучами,
Множество маленьких тел в пустоте, ты увидишь, мелькая,
Мечутся взад и вперед в лучистом сиянии света…
Кроме того, потому обратить тебе надо вниманье
На суматоху в телах, мелькающих в солнечном свете,
Что из нее познаешь ты материи также движенья,
Происходящие в ней потаенно и скрыто от взора…
Первоначала вещей сначала движутся сами,
Следом за ними тела из малейшего их сочетанья,
Близкие, как бы сказать, по силам к началам первичным,
Скрыто от них получая толчки, начинают стремиться,
Сами к движенью затем понуждая тела покрупнее.
Так, исходя от начал, движение мало-помалу
Наших касается чувств, и становится видимым также
Нам и в пылинках оно, что движутся в солнечном свете,
Хоть незаметны толчки, от которых оно происходит12.