Суперсила
Симметрии, соответствующие вращению или отражению, наглядны и радуют глаз, но они не исчерпывают весь запас симметрий, существующих в природе. Исследуя математическое описание той или иной физической системы, физики открывают время от времени новые и неожиданные симметрии. Симметрии таинственно и тонко “запрятаны” в математическом аппарате и совсем не очевидны тому, кто наблюдает саму физическую систему. Манипулируя символами в уравнениях, физики пытаются раскрыть весь набор симметрий, в том числе и таких, которые не видны “невооруженным глазом”.
Классический пример такого рода, возникший на рубеже нашего столетия, относится к законам электромагнитного поля.
Несколькими десятилетиями раньше Майкл Фарадей и другие физики установили, что электричество и магнетизм тесно связаны между собой и что одно порождает другое. Действие электрических и магнитных сил удобнее всего было описать, пользуясь понятием поля — невидимого воздействия, создаваемого материей, простирающегося далеко в пространство и способного влиять на электрически заряженные частицы, электрические токи и магниты. Действие такого поля можно наблюдать, если попытаться сблизить два магнита: не соприкасаясь друг с другом, они будут отталкиваться или притягиваться.
Позднее, в 50-х годах XIX в., Джеймс Клерк Максвелл, опираясь на эти факты, разработал теорию, связав электрическое и магнитное поля единой системой уравнений. Сначала Максвелл обнаружил, что эти уравнения “несбалансированны”: члены, относящиеся к электрическому и магнитному полям, входят в них не вполне симметрично. Чтобы придать уравнениям более красивый и симметричный вид, он ввел дополнительный член. Его можно было бы интерпретировать как не замеченный ранее эффект – порождение магнетизма переменным электрическим полем, но оказалось, что такой эффект действительно существует. Природа, очевидно, одобрила эстетический вкус Максвелла!
Введение дополнительного члена в уравнения Максвелла повлекло за собой чрезвычайно глубокие последствия. Во-первых, это позволило соединить электрическое и магнитное поля в единое электромагнитное поле. Уравнения Максвелла можно считать первой единой теорией поля, первым шагом на долгом пути к суперсиле. Они показали, что две силы природы, кажущиеся на первый взгляд совершенно различными, в действительности могут оказаться двумя различными проявлениями объединяющей их силы.
Во-вторых, среди решений уравнения Максвелла обнаружились неожиданные, но весьма многообещающие. Выяснилось, что уравнениям Максвелла удовлетворяют различные синусоидальные функции (опять симметрия!), которые, как уже говорилось ранее в этой главе, описывают периодические колебания, или волны. Эти электромагнитные волны, заключил Максвелл, самостоятельно распространяются в поле, т.е. в том, что кажется пустым пространством. Из своих уравнений он вывел формулу, выражающую скорость электромагнитных волн через электрические и магнитные величины. Подставляя численные значения, Максвелл получил, что скорость электромагнитных волн составляет около 300 000 км/с, т.е. совпадает со скоростью света. Отсюда последовал неизбежный вывод: свет должен представлять собой электромагнитную волну. Он действительно может распространяться в пустом пространстве, именно поэтому мы и видим Солнце.
Пойдя дальше, Максвелл предсказал также существование электромагнитных волн другой длины, и через несколько лет его предсказание подтвердилось: Генрих Герц открыл в лабораторных условиях радиоволны. Сегодня мы знаем, что гамма-, рентгеновское, инфракрасное, ультрафиолетовое и СВЧ-излучения также представляют собой электромагнитные волны. Небольшая добавка, внесенная Максвеллом в уравнения (носящие ныне его имя) из соображений симметрии, принесла большие результаты.
Открытие электромагнитных волн имело далеко идущие последствия, приведя к появлению радиотехники и в конечном счете к современной революции в электронике. Это великолепный пример, наглядно демонстрирующий не только гигантские возможности математики в описании мира и расширении нашего знания о нем, но и роль симметрии и красоты как путеводного принципа. Но оценить полностью все следствия, вытекающие из симметрии уравнений Максвелла, удалось лишь через пятьдесят лет.
На рубеже XX в. Анри Пуанкаре и Хендрик Лоренц исследовали математическую структуру уравнений Максвелла. Их особенно интересовали симметрии, скрытые в математических выражениях, – симметрии, которые тогда еще не были известны. Оказалось, что знаменитый “дополнительный член”, введенный Максвеллом в уравнения для восстановления равноправии электрического и магнитного полей, соответствует электромагнитному полю, обладающему богатой, но тонкой симметрией, которая выявляется лишь при тщательном математическом анализе. По-видимому, только Эйнштейн с его сверхъестественной интуицией мог предвидеть из физических соображений существование подобной симметрии.
Симметрия Лоренца—Пуанкаре аналогична по своему духу таким геометрическим симметриям как вращения и отражения, но отличается от них в одном важном отношении: никому до этого не приходило в голову физически смешивать пространство и время. Всегда считалось, что пространство – это пространство, а время – это время. То, что в симметрию Лоренца—Пуанкаре входят оба компонента этой пары, было странно и неожиданно.
По существу новую симметрию можно рассматривать наподобие вращения, но не только в одном пространстве. Это вращение затрагивает и время. Если к трем пространственным измерениям добавить одно временное, то получится четырехмерное пространство-время. Симметрия Лоренца—Пуанкаре – это своего рода вращение в пространстве-времени. В результате такого вращения часть пространственного интервала проектируется на время и наоборот. То, что уравнения Максвелла симметричны относительно операции, связывающей воедино пространство и время, наводит на размышления.
Понадобился гений Эйнштейна, чтобы полностью осознать все следствия такой симметрии. Пространство и время не существуют независимо друг от друга, они неразрывно связаны. Хитроумные “вращения” Лоренца и Пуанкаре – не просто абстрактная математика, они могут происходить в реальном мире, осуществляясь через движение. Ключ к причудливым пространственно-временным “проекциям”, или преобразованиям, лежит в скорости света и других электромагнитных волн, и величина этой скорости также следует непосредственно из уравнений Максвелла. Таким образом, существует глубокая взаимосвязь между распространением электромагнитных волн и структурой пространства и времени. Когда наблюдатель движется со скоростью, близкой к скорости света, пространство и время сильно изменяются, причем симметрично, и это отражено в математических соотношениях, полученных Лоренцем и Пуанкаре. Именно такой необычный эффект, столь противоречащий здравому смыслу, был описан в гл.2. Постижение столь тонкой и ранее не известной симметрии природы послужило толчком к созданию теории относительности Эйнштейна, а та в свою очередь ознаменовала рождение новой физики, потрясшей научный мир и изменившей лицо двадцатого столетия.
Более абстрактные симметрииУрок, преподнесенный работами Лоренца и Пуанкаре, состоит в том, что математическое исследование, в особенности на основе анализа симметрии, может стать источником выдающихся достижений в физике. Даже если заложенные в математическом описании симметрии трудно или невозможно представить себе наглядно физически, они могут указать путь к выявлению новых фундаментальных принципов природы. Поиск новых симметрий стал главным средством, помогающим физику в наши дни продвигаться к пониманию мира. Как мы увидим далее, суперсила – это высшее проявление симметрии в природе.
Все симметрии, о которых говорилось до сих пор, являются симметриями пространства или пространства-времени. Но понятие симметрии можно расширить, включив в него более абстрактные понятия. Как уже отмечалось, между симметрией и законами сохранения существует тесная связь. Один из наиболее твердо установленных законов сохранения – закон сохранения электрического заряда. Заряд может быть положительным и отрицательным, и закон сохранения заряда утверждает, что сумма положительного и отрицательного зарядов остается неизменной величиной. Если положительный заряд встречается с равным по абсолютной величине отрицательным зарядом, они нейтрализуют друг друга, создавая в сумме нулевой заряд. Аналогично положительный заряд может возникать, если одновременно возникает равный по абсолютной величине отрицательный заряд. Но возникновение или исчезновение результирующего заряда абсолютно исключено.