Машина, платформа, толпа. Наше цифровое будущее
Часть 1 из 3 Информация о книге
* * * Семье Макафи из Бетесды, Мэриленд. Дэвид, Шеннон, Амелия, Аврора и Эйвери Мэй, спасибо, что позволяли мне какое-то время оставлять часть денег на покерном столе Энди Моей матери Маргерит, улыбки, любовь и неизменная вера которой поддерживают меня Эрик Глава 1. Тройная революция Эти параллели достаточно близки и очевидны, чтобы быть почти уверенным в том, что, как и в случае предыдущих промышленных революций, основное воздействие информационной революции на общество будущего все еще впереди. Питер Друкер[1], 2001 г. Компьютеры и го Людям всегда было трудно научиться хорошо играть в го, а научить этому компьютер казалось и вовсе невозможным. Игра го построена на чистой стратегии, в ней нет места везению[2]. Она была создана в Китае минимум 2500 лет назад[3]. Играют в нее два человека: один белыми камнями, другой черными, – по очереди выставляя их на пересечения линий решетки размером 19 × 19 (пунктов). Если группа камней или один камень лишаются всех точек свободы, то есть незанятых соседних пунктов по горизонтали и вертикали – а такое, как правило, происходит, когда они оказываются окружены камнями противоположного цвета, – то считаются захваченными и снимаются с доски. Побеждает[4] игрок, который захватил большую территорию. Те, кому нравится стратегия, любят и го. Конфуций говорил, что «благородные мужи не должны тратить время на простые игры – они должны изучать го»[5]. Во многих кругах го ставят выше, чем шахматы – сложную стратегическую игру для двух человек, победа в которой не зависит от удачи. Гроссмейстер Эдуард Ласкер[6] заметил: «Тогда как вычурные правила шахмат могли быть созданы только людьми, правила го настолько элегантны, органичны и строго логичны, что иные разумные формы жизни, если они существуют где-то во Вселенной, почти наверняка играют в эту игру»[7]. Очевидная простота игры скрывает сложность, которую даже трудно осознать. Большая доска и широкий выбор мест, куда можно ставить камни, приводят к числу 2 × 10170 (к двойке со 170 нулями)[8] – столько в го позиций. Насколько велико это число? Вот вам очень приблизительный ориентир. Наблюдаемая Вселенная содержит примерно 1082 атомов[9]. Если бы каждый из них стал Вселенной размером с нашу, то число возможных позиций в го по-прежнему было бы больше, чем количество атомов во всех этих вселенных. ИГРА, КОТОРУЮ НИКТО НЕ В СИЛАХ ОБЪЯСНИТЬ Каким образом лучшие мастера го ориентируются в безумной сложности игры и делают хорошие ходы? Никто не знает, даже сами игроки. Они изучили некоторый набор эвристических приемов и стараются их придерживаться[10]. Но этим все и ограничивается – даже мастера часто затрудняются объяснить свою стратегию. Майкл Редмонд, один из немногих игроков неазиатского происхождения, достигших высшего ранга в игре, поясняет: «Я вижу ход и уверен в его правильности, но я не могу сказать вам точно, как я это узнаю. Я просто вижу»[11]. Дело не в том, что игроки в го косноязычны. Просто у всех нас нет полного доступа к собственным знаниям. Когда мы распознаем чье-то лицо или едем на велосипеде, мы не способны четко объяснить, как и почему делаем то или другое. Трудно изложить скрытое знание. Такое состояние прекрасно описал Майкл Полани[12]: «Мы знаем больше, чем способны рассказать». Парадокс Полани, назовем его так, был серьезным препятствием для всех, кто попытался построить компьютер, играющий в го. Как написать программу, основанную на оптимальных стратегиях игры, когда никто из людей не в силах сформулировать стратегии? Можно запрограммировать некоторые эвристические правила, но это не обеспечит победу над сильными игроками, выходящими за их рамки, но не способными объяснить, как они это делают. Чтобы ориентироваться в сложных средах, например во всех возможных позициях игры го, разработчики часто опираются на моделирование. Они пишут программы, которые делают ход, выглядящий хорошим, затем исследуют все разумные ответы противника на него, все разумные ответы на каждый такой ответ и так далее. В конечном счете обычно выбирается тот ход, что обеспечивает больше всего хороших вариантов и меньше всего плохих. Однако из-за того, что существует такое огромное количество возможных партий в го – так много вселенных, ими полных, – у вас получится смоделировать ничтожно малую их долю, будь у вас хоть цех, полный суперкомпьютеров. Вследствие недоступности ключевых знаний и неэффективного моделирования прогресс у программистов, занимавшихся го, шел медленно. Давая характеристику нынешней ситуации с компьютерами, играющими в го, и ожидаемым перспективам, профессор философии Алан Левиновиц заключил в мае 2014 года в журнале Wired: «Может оказаться, что появление в течение десяти лет компьютера-чемпиона – слишком оптимистичный прогноз»[13]. Статья в Wall Street Journal, написанная в декабре 2015 года профессором психологии Крисом Чабрисом, ведущим в журнале колонку об играх, называлась «Почему го по-прежнему не дается компьютерам». ПРЕОДОЛЕНИЕ ПАРАДОКСА ПОЛАНИ В научной статье, опубликованной буквально в следующем номере Wall Street Journal (в январе 2016 года), рассказывалось о компьютере, который уже нельзя одурачить. Группа из лондонской компании DeepMind, принадлежащей Google и специализирующейся на машинном обучении (эту область искусственного интеллекта мы обсудим в главе 3), опубликовала статью «Освоение игры го с помощью нейронных сетей и поиска по дереву»[14], и престижный журнал Nature сделал ее темой номера. Статья описывала программу AlphaGo, которую создатели научили играть в го, обойдя парадокс Полани. Они не пытались напичкать программу лучшими стратегиями и эвристическими правилами. Вместо этого они создали систему, самообучающуюся в ходе анализа игровых позиций во множестве партий. AlphaGo должна была замечать в большом количестве данных мельчайшие паттерны и связывать действия игроков, например постановку камня на конкретное место, с результатами, скажем с выигрышем[15]. Дав программе доступ к тридцати миллионам позиций, записанных в онлайновом хранилище, ей, по сути, сказали: «Используй их и выясни, как выигрывать». AlphaGo также сыграла множество партий против самой себя, сгенерировав еще 30 миллионов позиций, которые затем проанализировала. Во время игры система вела моделирование, однако весьма узкое: она использовала знания, полученные от изучения миллионов позиций, чтобы моделировать только те ходы, которые, по ее мнению, вели к победе с наибольшей вероятностью. Работа над AlphaGo началась в 2014 году[16]. К октябрю 2015 года она была готова к тестированию. AlphaGo – какое-то время это держалось в тайне[17] – сыграла матч из пяти партий с Фань Хуэем, который тогда был чемпионом Европы, и выиграла со счетом 5:0. Победа компьютера в го на таком высоком уровне, оказавшаяся для всех неожиданной, произвела впечатление на сообщество ученых и разработчиков в области искусственного интеллекта. Практически все аналитики и комментаторы назвали достижение AlphaGo настоящим прорывом. Однако начались споры о масштабе победы. Нейробиолог Гэри Маркус заметил: «В Европе го едва ли является спортом, и этот чемпион занимает в мировом рейтинге всего 633-е место. Победу робота над 633-м в рейтинге профессиональным теннисистом тоже назвали бы впечатляющим достижением, однако неверно было бы говорить, что он достиг мастерства в игре»[18]. Команда DeepMind, очевидно, сочла замечание справедливым, поскольку бросила вызов Ли Седолю, предложив сыграть матч из пяти партий в Сеуле в марте 2016 года. Многие считали Седоля лучшим игроком в го на планете[19] и одним из лучших, которых помнят современники. Его стиль характеризовали как «интуитивный, непредсказуемый, творческий, напряженный, неистовый, запутанный, глубокий, стремительный, спонтанный»[20]. Эти качества, по мнению самого Седоля, давали ему преимущество перед любым компьютером. Он говорил: «В игре го есть красота, и я не думаю, что машины ее понимают… Я считаю, что человеческая интуиция слишком совершенна, чтобы искусственный интеллект мог достичь чего-то подобного»[21]. Седоль предположил, что выиграет минимум четыре партии из пяти, заметив: «Что касается матча в октябре, мне кажется, что уровень AlphaGo не соответствует моему»[22]. Партии между Седолем и AlphaGo привлекли огромное внимание общественности в Корее и других странах Восточной Азии. AlphaGo выиграла первые три партии, обеспечив себе победу во всем матче. Седоль взял верх в четвертой встрече. Его победа дала кое-кому из наблюдателей надежду, что человеческий ум обнаружил недостатки цифрового противника, которые Седоль мог бы использовать в дальнейшем. Если это и было правдой, то все равно не помогло Седолю в следующей партии. AlphaGo снова выиграла, завершив матч со счетом 4:1 в свою пользу. Седоль счел матч изматывающим и после поражения сказал: «Я ощущаю своего рода бессилие… У меня огромный опыт игры в го, но никогда не было случая, чтобы я чувствовал такой напор со стороны противника»[23]. Новые технологии обошли мастеров го. Что случилось с активами? В марте 2015 года специалист по стратегии Том Гудвин обратил внимание на некий общий принцип. Он написал: «Uber, крупнейшая в мире служба такси, не владеет автомобилями. Facebook, самая популярная социальная сеть, не создает контент. Alibaba, наиболее дорогостоящая торговая компания, не имеет собственных товарных запасов. Airbnb, самая большая онлайн-площадка для поиска съемного жилья, не владеет недвижимостью»[24]. Читатель-скептик может возразить, что некоторые из этих проектов не такие уж революционные, какими кажутся на первый взгляд. Например, многие таксомоторные компании не имеют собственных автомобилей. Они владеют лицензиями, что дает им право оказывать услуги в каком-либо городе, и предоставляют их владельцам и водителям транспортных средств. Аналогично многие крупные гостиничные компании на деле не владеют всеми заведениями, носящими их название, предпочитая вместо этого работать с владельцами недвижимости. Во всех таких случаях компании имеют долгосрочные активы, такие как лицензии и договоры, важные для данной сферы и потому ценные. У Uber и Airbnb ничего такого нет. Uber не претендует ни на одно транспортное средство, ни на одну лицензию на услуги такси, а Airbnb не имеет долговременного договора ни с одним владельцем жилья. Тем не менее обе компании быстро привлекли миллионы клиентов, достигнув миллиардной рыночной стоимости. Подобный успех, по наблюдению Гудвина, становится все более примечательным. В то время, когда он писал свою заметку в колонку, свыше миллиона человек ежедневно пользовались Uber[25], чтобы попасть в нужное место в одном из 300 городов в 60 странах[26], а Airbnb предлагала 640 тысяч различных вариантов проживания[27] в 191 стране[28], начиная с юрты в Монголии[29] и заканчивая домом в Ирландии, где провел детство Джеймс Джойс[30]. Китайская компания Alibaba привнесла этот подход в сферу розничной торговли, где большой охват всегда означал обладание огромным количеством вещей. Например, компании Walmart к концу 2016 года принадлежало более 150 дистрибьюторских центров и шесть тысяч грузовых автомобилей, которые за год проезжали 700 миллионов миль, чтобы доставить товары на полки 4500 магазинов в Соединенных Штатах[31]. На 31 октября 2016 года на балансе компании числились разная собственность и оборудование на сумму 180 миллиардов долларов[32]. В то же время общая рыночная стоимость Walmart была меньше, чем стоимость Alibaba, которая в 2016 году обеспечила продажи на более чем 0,5 триллиона долларов. Компания Alibaba, основанная в 1999 году школьным учителем Джеком Ма и его семнадцатью компаньонами, действовала как онлайн-посредник, соединяющий покупателей с продавцами. Наиболее популярными площадками были Taobao, где люди и мелкие фирмы продавали товары потребителям, и Tmall, где тем же самым занимались крупные компании. К концу 2016 года количество китайцев, ежемесячно использующих приложения Alibaba, превысило население США[33]. В 2009 году площадка Tmall начала продвигать День холостяков в Китае. Изначально это был праздник людей, не состоящих в браке; он появился в середине 1990-х в Нанкинском университете. Праздник отмечается в одиннадцатый день одиннадцатого месяца, поскольку в этой дате больше всего единиц, символизирующих одиночество. В первом Дне холостяков, организованном Tmall, приняло участие всего 27 предпринимателей, однако новый праздник быстро стал самым важным торговым событием в стране, поскольку в этот день люди делали покупки не только для себя, но и для интересных им персон. И к 11 ноября 2016 года площадки Alibaba обеспечили продажи на 17,8 миллиарда долларов[34] – втрое больше, чем американские «черная пятница» и «киберпонедельник», вместе взятые[35]. Возможно, из всех компаний, упомянутых Гудвином, самую необычную историю имеет Facebook. Появившаяся в комнате Марка Цукерберга в гарвардском общежитии, через одиннадцать лет она из социальной сети для нескольких элитных университетов США превратилась в глобальную систему для общения, социализации и обмена контентом, куда ежедневно заходят 936 миллионов человек[36]. Как заметил Гудвин, Facebook затягивает всех их и держит в среднем 50 минут в день[37], но сама не создает при этом никакой информации. Обновления статуса, комментарии, фотографии, видеоролики, ссылки и прочий пользовательский контент льется на людей все увеличивающимся потоком и заставляет их возвращаться снова и снова. Предоставляя весь этот контент пользователям, Facebook показывает им рекламу, а иногда очень много рекламы. Доходы компании во втором квартале 2016 года, по сути, полностью полученные от рекламы, составили 6,4 миллиарда долларов, а прибыль равнялась двум миллиардам[38]. Новостные организации и прочие онлайн-системы, которые разрабатывают контент традиционными способами, тратя деньги на зарплаты, командировки и тому подобное, были встревожены не только тем, что Facebook расходовала меньше, но и тем, что в глазах рекламодателей эффективность объявлений в социальной сети оказалась выше. Facebook знала о своих участниках очень много, ведь они сами рассказали системе о себе через контент и действия, поэтому могла более прицельно доносить до них объявления. Каждый рекламодатель, так или иначе, сталкивается с печальным явлением, которое хорошо характеризуют слова, часто приписываемые Джону Уэйнмейкеру[39]: «Половина денег, что я трачу на рекламу, пропадает впустую. Беда в том, что я не знаю, какая это половина»[40]. Реклама всегда считалась недостаточно сфокусированным средством воздействия, поскольку ее невозможно было показывать только тем людям, что откликнутся на нее с большой вероятностью. Facebook предложил рекламодателям такой уровень избирательности в воздействии на целевую аудиторию – причем воздействии постоянном, глобальном и в любом нужном масштабе, – до которого традиционным сетевым средствам было очень далеко. ТОНКАЯ, БЫСТРО РАСПРОСТРАНИВШАЯСЯ ПРОСЛОЙКА Гудвин назвал такие компании «неописуемо тонкой прослойкой»[41], он сказал: «Нет лучшего бизнеса, чем участие здесь». В силу своей тонкости, поскольку эти компании владеют главным образом приложениями и кодом, а не материальными активами и инфраструктурой, они могут быстро расти. Например, за двенадцать месяцев после выхода статьи Гудвина Airbnb удвоила количество ночей, заказываемых на сайте, и стала настолько популярной, что администрации некоторых городов, включая Париж, Барселону, Лиссабон, Берлин и Сан-Франциско, начали беспокоиться, не повлияет ли это плохо на исторические жилые кварталы. Рост компании был таким быстрым и устойчивым, что в июле 2016 года исследователь Том Сли написал в блоге на сайте Harvard Business Review, что «Airbnb столкнулась с жизненно важной проблемой расширения»[42], поскольку все больше городов и регионов начинали противостоять экспансии этой компании. Uber также продолжает быстро расти, часто ввязываясь в конфликты и тестируя новые предложения. Ее сервис совместных поездок UberPool, появившийся в 2014 году[43], быстро стал популярным во многих городах, включая Нью-Йорк. В мае 2016 года компания объявила, что любая поездка в час пик на Манхэттене ниже 125-й улицы будет оцениваться по фиксированной ставке пять долларов[44], а в июле того же года специальное предложение позволило жителям города покупать четыре недели поездок за 79 долларов[45]. При такой стоимости для многих людей такси стало дешевле метро. Facebook, уже бывшая огромной успешной компанией тогда, когда Гудвин написал о ней в марте 2015 года, продолжила расти и расширять свое влияние, и это сильно бьет по производителям традиционного контента, заставляя их вкладываться в инновации. В августе 2015 года компания Parse.ly, занимающаяся анализом интернет-трафика, выпустила отчет, где видно, что на отслеживаемые ею крупные новостные и информационные порталы через Facebook пришло больше людей, чем через Google и другие поисковики[46]. В марте 2016 года Марк Цукерберг обнародовал десятилетний план развития компании[47], который включал значительные инициативы в области искусственного интеллекта, виртуальной и дополненной реальности и даже самолетов на солнечной энергии (их будут использовать, чтобы открыть доступ в интернет миллионам людей, живущим далеко от телекоммуникационной инфраструктуры). Как компаниям из этой «неописуемо тонкой прослойки» удалось добиться такого влияния и успеха? По мнению Гудвина, «мы наблюдаем кое-что интересное»[48]. Гигант выходит к людям С какой стороны ни взгляни, General Electric – одна из самых успешных компаний США. Ведущая свою историю от прославленного изобретателя Томаса Эдисона и его Edison Electric Light Company, в 1896 году General Electric стала одной из двенадцати компаний, включенных в первоначальный промышленный индекс Доу – Джонса[49]. И она единственная остается в этой группе до сегодняшнего дня. GE отметилась – иногда приходя, иногда уходя – во многих областях, включая выработку электроэнергии, аэрокосмическую и оборонную промышленность, производство пластмасс, здравоохранение и финансы, но в течение всей своей долгой истории она всегда разрабатывала товары для потребителей – от эдисоновских электрических лампочек до радио, телевизоров и бытовой техники. General Electric одной из первых развернулась в огромную диверсифицированную глобальную корпорацию, добившись в этом превосходных результатов. Она много вкладывала в исследования и разработки, часто сотрудничая с университетами. GE также была одной из первых крупных компаний, которые потратили немало времени и усилий не только на продвижение технологий, но и на повышение квалификации менеджеров. В 1956 году General Electric создала первый специальный корпоративный университет в Кротонвилле, и название этого места стало синонимом профессионализации работы менеджера. В XXI веке в Кротонвилле и в компании в целом появилась масштабная инициатива по расширению возможностей в маркетинге, предполагающих понимание и последующее удовлетворение потребностей клиентов во всех сферах бизнеса. Обзор 2013 года, посвященный усилиям General Electric в этой области, показал, что самой востребованной способностью компании было «внутреннее создание инноваций в маркетинге»[50].
Перейти к странице: