Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Часть 37 из 42 Информация о книге
С 2006 года Американский национальный институт стандартов и технологий (NIST) утвердил следующее значение: 6,02214179(30) · 1023 частиц/моль. Вернуться 157 Это также означает, что для того чтобы найти относительную массу элемента или химического соединения, оно либо должно находиться в газообразном состоянии, либо его можно перевести в это состояние; это не подходит для всех веществ, и поэтому необходимо применить другие методы. Вернуться 158 Под «большим» я имею в виду что-то намного большее, чем один единственный атом или молекула, а нечто размером с частицу пыли. Вернуться 159 Под «погруженным в жидкость» мы имеем в виду всего лишь противоположность веществу, которое растворяется в жидкости. Например, если вы добавляете сахар или соль в воду, они растворяются. Если какое-то вещество добавлено в воду, но при этом оно не растворилось в ней, а осталось на поверхности, то оно погружено в воду. Вернуться 160 Первой техникой, которая могла получение изображения отдельных атомов, стал полевой ионный микроскоп (1950-е годы). Вернуться 161 Это приблизительный расчет, поэтому давайте потратим минуту, чтобы понять его. Молекула воды, как вы знаете, имеет формулу H2O. Это плоская молекула, атомы которой связаны как H – O—H, и получающийся при их соединении угол составляет 104,5°. Длины связи H – O составляют приблизительно 0,1 нанометра (нм), что составляет 10–10 метров (м), или 0,0000000001 м. Кроме того, расстояние между двумя молекулами водорода составляет приблизительно 0,15 нм. С другой стороны, размер броуновской частицы – несколько микрометров (мкм); один микрометр равен 10–6, или 0,000001 м. В письме своему другу Эйнштейн пишет, что согласно его новой теории, частицы такого размера должны совершать наблюдаемые (через микроскоп) движения благодаря тепловым движениям молекул жидкости. Поэтому для простоты я взял молекулу воды как самую длинную, около 0,15 нм (расстояние между атомами водорода), а также 1 мкм для размера броуновской частицы. Отношение этих размеров равно 6666,7, или примерно 6700. Вернуться 162 Сегодня мы используем более изящный подход, чем выражение Эйнштейна. Можно записать уравнение движения Ньютона для броуновской частицы, которое учитывает трение (силу, пропорциональную скорости) и силу, представляющую собой случайную функцию времени, с которой действуют на тело молекулы жидкости (например, воды). Это уравнение известно как стохастическое дифференциальное уравнение Ланжевена. Вернуться 163 Выражение Эйнштейна для среднеквадратичного смещения в одном направлении выглядело так:= 2Dt, где D – коэффициент диффузии, а t – величина промежутка времени. Однако данное выражение справедливо только по прошествии определенного временного периода. Если промежуток времени будет слишком коротким, среднеквадратичное смещение будет непосредственно следовать из уравнения движения Ньютона и может быть записано следующим образом: ~ t2, где v0 – средняя скорость системы при данной температуре. Отчасти это могло привести к ошибкам в изначальных измерениях. Таким образом, на коротких временных интервалах определяется классическими уравнениями движения, а при более длинных промежутках берет свое статистическая природа системы, и выражение Эйнштейна вступает в силу. Вернуться 164 Именно так Перрен и смог получить первое точное значение, как отмечалось ранее. Вернуться 165 Например, при комнатной температуре предметы испускают излучение преимущественно в инфракрасной области электромагнитного спектра, хотя наши глаза не позволяют нам непосредственно его наблюдать. Однако оно лежит в основе работы тепловизоров, использующихся в некоторых очках ночного видения, позволяющих четче видеть предметы в темное время суток. Другой знакомый пример – лампа накаливания, нить которой нагрета (до температуры около 3000 K), чтобы давать видимый свет. Однако, помимо видимого света, она излучает в инфракрасных и красных областях электромагнитного спектра, который составляет большую часть ее излучения. Вернуться 166 При прохождении света через дифракционную решетку разные цвета в нем (то есть световые волны разных частот, или длин) разделяются. Таким образом, луч света, испускаемого атомом, в результате дает спектр, который служит «отпечатком пальцев» для этого определенного типа атома, или химического элемента. Вернуться 167 Радуга образуется, когда Солнце появляется после дождя или светит во время дождя. Капельки воды, находящиеся в воздухе, разделяют солнечный свет на разные цвета, которые его составляют, – они и видны как радуга. Это явление отличается от дифракции и включает в себя как преломление, так и полное внутреннее отражение света в капле. Вернуться