Мозг. Как он устроен и что с ним делать
Часть 10 из 32 Информация о книге
Строго говоря, как такового электрического импульса (да еще, как иногда это представляют в компьютерных моделях, со светящимися или искрящимися потоками световой энергии) в нервной системе нет. Вместо этого в результате выброса нейромедиатора происходит открытие ионных каналов (пор) для заряженных частиц. Эти поры находятся в мембране нервной клетки. Через них могут перемещаться ионы натрия, калия, хлора и так далее. На самом деле правильнее говорить о потенциале действия, а не о нервном импульсе. Потенциал действия – это такая волна возбуждения, которая перемещается по мембране нервной клетки в виде кратковременного изменения мембранного потенциала на некотором участке. Положительно заряженных ионов натрия (Na+) в 20–30 раз больше вокруг нейрона, чем внутри него. Из-за этого наружная поверхность мембраны нейрона заряжена положительно по отношению к внутренней поверхности этой же мембраны. Но когда медиатор связывается с рецепторами, происходит открытие натриевых каналов (пор). И положительно заряженные ионы натрия (Na+) поступают внутрь нейрона. Из-за этого мембрана нервной клетки приобретает условный отрицательный заряд (ведь положительно заряженные ионы Na+ уже утекли внутрь). Причем происходит эта смена заряда не сразу на всей мембране клетки, а на каком-то небольшом ее участке. Рис. 28. Участок мембраны нейрона с ионными каналами (компьютерная модель) И так постепенно, участок за участком, по мембране (в том числе и по длинному отростку) происходит смена заряда. Предыдущий кусочек мембраны как бы подначивает следующий участок менять заряд (как в цепной реакции). Таким образом, потенциал действия – это физиологическая основа нервного импульса. Конечно, это очень упрощенная схема, потому что в процессе передачи импульса (возникновения потенциала действия) могут принимать участие и другие молекулярные системы. Но в действительности, несмотря на понимание описанных выше биофизических и химических механизмов, у науки пока нет хорошо работающей модели мозга. Нужна такая модель, которая бы подробно отражала все аспекты его деятельности. Фармакологи, медики и физиологи XX века активно искали вещества, с помощью которых можно было бы воздействовать на наше поведение. Наряду с открытием первых нейромедиаторов шел поиск препаратов, способных воздействовать на них. Так постепенно зарождалась нейрохимическая парадигма работы мозга. Принцип воздействия нейромедиаторов на разные рецепторы Как мы уже выяснили ранее, нейромедиаторы связываются со специфическими белковыми комплексами – рецепторами, после чего проводится нервный импульс. Причем узнавание происходит по принципу «ключ к замку», то есть лишь специфическая молекула конкретного нейромедиатора подходит определенному рецептору. Чтобы дальше понимать, как действуют нейромедиаторы, а также различные препараты, нужно всего лишь уяснить базовые принципы работы рецепторов на поверхности клеток мозга. Существует два основных типа рецепторов. Первый тип имеет прямую связь с порами (ионными каналами) для заряженных частиц. Такой рецептор называется ионотропным. Как только медиатор связался с ним, пора открывается и частицы устремляются внутрь клетки (рис. 29). Другой тип рецепторов называют метаботропным. Та-кие рецепторы не связаны напрямую с ионным каналом, но соединены с системой биологически активных молекул. Когда нейромедиатор связывается с таким рецептором, в клетке изменяется метаболизм. Метаботропный рецептор, связавшись с нейромедиатором, посылает сигнал целой системе физиологически активных молекул внутри клетки. Например, это могут быть G-белки. А они уже проводят сигнал дальше, после чего происходит либо открытие, либо закрытие ионных каналов. Не нужно сейчас пытаться все это запомнить. Постарайтесь просто понять принцип действия: рецептор как бы активирует сигнальную систему, принимающую решение о том, что делать с порами (ионными каналами) клетки (рис. 30). Обратите внимание, что обычно сигнальные системы состоят из множества молекул (они называются молекулами-посредниками). Возникает закономерный вопрос: а почему бы бабуле-природе не сделать все каналы ионотропными, чтобы не заморачиваться со всякими молекулами-посредниками? Рис. 29. Ионотропный рецептор Предполагают, что дело тут в усилении сигнала. Одна молекула нейромедиатора, задействовав один рецептор, приводит к активации многих других молекул. Если рецепторов несколько, может быть открыто сразу множество каналов. Метаботропные рецепторы влияют на активность всей клетки, в то время как ионотропные – оказывают лишь локальное воздействие на небольшой по площади участок мембраны клетки вокруг самого рецептора. Более того, метаботропные рецепторы работают медленнее, но и эффект длится дольше. Тормозные и возбуждающие нейромедиаторы Стоит отметить, что физиологически нейромедиаторы бывают тормозными и возбуждающими. Из названий понятно, что одни активируют (запускают) работу систем мозга, другие, напротив, тормозят. Если нейромедиатор связывается с рецептором и увеличивается поступление ионов Na+ и Ca2+ внутрь клетки, что приводит к возникновению потенциала действия и проведения нервного импульса, он называется возбуждающим. Рис. 30. Метаботропный рецептор. Изображена система молекул, которые активируются в ответ на присоединение нейромедиатора к рецептору Если же при связывании нейромедиатора с рецептором наблюдается поступление ионов хлора (Cl-) внутрь клетки и выход ионов калия (К+) из нее, что приводит к снижению ее возбудимости, речь идет о тормозном процессе. По сути, механизм торможения или возбуждения сводится к связыванию нейромедиаторов с рецепторами и последующему открытию пор (ионных каналов) для тех или иных заряженных частиц. Как ни крути – далеко от нейромедиаторов уйти не получается. Сами нейромедиаторы были открыты весьма любопытным образом. В 20-е годы прошлого века биохимик Отто Леви проводил эксперименты, в ходе которых стимулировал блуждающий нерв лягушки. Это приводило к тому, что частота сокращений сердца животного замедлялась. Ученый собирал жидкость вокруг замедлившегося сердца лягушки и наносил на сердце другого животного. И оно тоже начинало замедляться! Это выглядело как настоящая фантастика. Интересно, что параллельно с Леви это же вещество обнаружил американский физиолог Генри Дейл. Удивительным веществом оказался нейромедиатор ацетилхолин. Именно он выделяется в нервно-мышечном синапсе (контакте между нервным окончанием и мышцей). За это открытие оба исследователя получили в 1936 году Нобелевскую премию. Так началась история нейрохимической теории мозга. Именно в рамках этой концепции и было принято считать все нейроны, работающие с тем или иным нейромедиатором, отдельными системами. Ацетилхолиновая система достаточно обширно представлена в мозге. Иногда ее еще называют холинергической системой. Ацетилхолин На первом этаже (в стволе мозга) находятся нервные клетки, которые синтезируют ацетилхолин, а затем по отросткам отправляют его в структуры второго этажа (базальные ганглии). В этих структурах есть свои нейроны, выделяющие ацетилхолин. Их отростки густо расходятся по коре мозга, а также отправляются в гиппокамп (структуру, связанную с памятью). Внутри ацетилхолиновой системы обнаружено два вида рецепторов: мускариновые и никотиновые. Мускариновые рецепторы являются метаботропными, а никотиновые – ионотропными. Сами рецепторы распределены в мозге неравномерно. Например, в среднем и продолговатом мозге представлены преимущественно мускариновые рецепторы, тогда как в гиппокампе и коре встречаются оба вида. Обратите внимание, что никотиновые рецепто-ры являются ионотропными, а значит – быстрыми. Как вы можете догадаться, они реагируют на воздействие табака, содержащего никотин. Подробнее о том, как курение влияет на память и внимание, мы поговорим во второй части книги. Рис. 31. Строение ацетилхолиновой (холинергической) системы Работа ацетилхолиновой системы связана с таким явлением, как синаптическая пластичность. Это способность контактов (шипиков) изменять свою архитектуру во время обучения. Для запоминания новой информации необходимо создание синапсов или их перестройка. Аксоны ацетилхолиновой системы способны помогать клеткам, использующим другие нейромедиаторы, проводить нервные импульсы. Так ацетилхолиновые нейроны открывают дополнительные ионные каналы на клетках гиппокампа, помогая последним передавать сигнал на следующий нейрон. Полагают, что это облегчает запоминание новой информации. В исследованиях 2000-х годов было показано, что ацетилхолин играет важную роль в обеспечении процессов внимания. Причем особенно активно в работу включаются никотиновые рецепторы. Они быстрые, и за счет этого мы можем с большой скоростью переключать внимание с одного объекта на другой. Удалось доказать, что нарушение глубоких структур (первого этажа) ацетилхолиновой системы ухудшает работу некоторых отделов лобных долей, что ведет к снижению внимания. Логично предположить, что раз ацетилхолиновая система обеспечивает внимание (пусть даже и частично), неплохо было бы ее простимулировать. А теперь маленькое отступление. Мы с вами уже познакомились с принципами работы синапсов и поняли, что без молекул нейромедиатора никуда. Почти все препараты, воздействующие на нервную систему, идут по одному из двух путей: 1. Напрямую воздействуют на рецептор и запускают процесс передачи импульса или же, напротив, блокируют сам рецептор, предотвращая передачу. 2. Увеличивают количество нейромедиатора в щели, чтобы он сам активировал рецепторы и запускал передачу импульса. Вот и вся магия. В первом случае молекулы вещества (препарата или наркотика) имитируют нейромедиатор (потому что имеют химическую конфигурацию, похожую на него) и работают по принципу «ключ к замку». Если надо заблокировать рецептор, молекула препарата обычно имеет в составе участок, способный связываться с ним. Так молекула садится на рецептор, не позволяя ему связываться с нейромедиатором. При этом передачи нервного импульса не происходит. Во втором случае препараты воздействуют на системы клеток так, чтобы нейромедиатор накапливался в щели. К примеру, они могут подавлять действие фермента, разрушающего нейромедиатор. Либо блокируется захват нейромедиатора из щели. Такое втягивание молекул нейромедиатора (в пресинаптическую мембрану) называют обратным захватом. Бабуля-природа, вообще, экономичная старушка. Нет смысла многократно синтезировать молекулы, если можно обратно захватить те, что остались в щели. То есть мы подавляем процесс обратного захвата, что позволяет нейромедиатору накапливаться в щели. В разных ситуациях могут быть свои особенности, но базовые принципы одни и те же. В случае с ацетилхолиновыми препаратами применяются ингибиторы (подавители работы) ацетилхолинэстеразы – фермента, разрушающего нейромедиатор ацетилхолин прямо в синаптической щели. Как вы понимаете, это приводит к увеличению количества медиатора в щели и улучшению передачи сигнала между клетками. К препаратам, воздействующим на ацетилхолинэстеразу, относят галантамин и ривастигмин. Есть данные, что эти препараты также способны уменьшить выраженность симптомов болезни Альцгеймера. Важно понимать, что ацетилхолиновые рецепторы встречаются не только в мозге. Ацетилхолин – это ключевой нейромедиатор нервно-мышечной передачи. Именно с его помощью мышца получает сигнал о том, что надо бы поработать. Поэтому ацетилхолиновые рецепторы есть во всех мышечных органах (в том числе – в желудке и сердце). Ацетилхолин может оказывать серьезное влияние на сердечный ритм. Поэтому воздействие препаратами на ацетилхолиновую систему должно проводиться крайне осторожно, под контролем специалистов. Справедливости ради нужно заметить, что есть и пре-параты, блокирующие работу ацетилхолиновых рецепторов. Атропин связывается с рецепторами и делает их нечувствительными к ацетилхолину. Введение атропина приводит к увеличению частоты сердечных сокращений, расширению зрачков. То есть атропин выключает из работы ту часть нервной системы, которая работает на ацетилхолине. Например, в случае с сердцем блокируется тормозящее действие со стороны блуждающего нерва и поэтому сердечная мышца сокращается чаще. Как мы видим, вполне себе механистично-физиологический эффект. Выключили тормоз – заработало быстрее. В научной литературе вещества, оказывающие возбуждающее воздействие на мускариновые рецепторы, называют М-холиномиметиками, а препараты, подавляющие их работу, – М-холиноблокаторами. Нет возможности в одной книге рассказать обо всех свойствах этих препаратов, поэтому предлагаю вам самостоятельно поискать информацию о них. Вы увидите, что они имеют широчайший спектр применения в самых разных областях медицины, начиная с подбора очков и заканчивая лечением насморка. Дофамин Очень часто в популярной литературе дофамин называют гормоном счастья. Но с точки зрения нейробиологии это не так. Исследователи до сих пор не обнаружили никаких гормонов счастья. Мозг не был придуман для бесконечного счастья и ощущения удовлетворения. Напротив, природа постоянно преподносила нашим предкам «сюрпризы» в виде стихийных происшествий, опасных хищников, засух, безводья и так далее. Как мы сумели понять, нейромедиаторы выполняют определенную физиологическую функцию. Так вот, главная функция нейронов, работающих на дофамине, заключается в создании определенного состояния, характеризующегося возбуждением, приливом энергии. Когда нам сообщают, что в конце месяца мы получим дополнительную премию, внутри нас как раз и возникает это самое состояние психологического подъема. Наш мозг предвосхищает удовольствие. Вспомните, как крыса в эксперименте Олдса и Милнера жала на педаль. Она ожидала поощрения. Только мы, вместо нажатия на педаль, идем работать (также ожидая поощрения, но в виде премии). Правда, в отличие от крысы, мы способны держать в голове идею о том, что поощрение будет не скоро, а лишь в конце месяца. Понять это мы способны благодаря хорошо развитому третьему этажу мозга с новой корой. Лимбическая система второго этажа (где синтезируется дофамин) играет роль такого эмоционального генератора внутреннего драйва, мотивации. У животных на этом все и заканчивается. Животные с плохо развитой корой мозга просто бросаются вперед при виде добычи (эту мотивацию им также создает дофамин) – мы же способны проанализировать целесообразность тех или иных действий. Кора помогает нам остановиться и не натворить глупостей. Она помогает нам вытормозить излишние желания. К примеру, человек, страдающий диабетом, видит большой вкусный торт. Дофаминовая система на втором этаже активируется, и у человека может возникнуть ощущение предвкушения удовольствия, которое он получит от тающего во рту крема. Но кора мозга знает, что такой сладкий десерт вреден для организма. Поэтому она блокирует подобное желание, подключая по нисходящим связям еще и амигдалу, которая заставит человека испытать страх за свою жизнь. Работу коры мозга мы рассмотрим чуть позже на других наглядных примерах.