Прайс-менеджмент
Часть 62 из 99 Информация о книге
• Информация, необходимая для определения оптимальных цен • Правила и руководства по принятию ценовых решений • Компьютеризованное ценообразование 14:30–15:30 Ценовые решения и их реализация • Цены: заинтересованные лица, цели и возможные конфликты • Централизация и децентрализация полномочий по принятию ценовых решений • Реализация цен на рынке • Организация мероприятий по ценообразованию 15:30–15:45 Перерыв 15:45–16:30 Оптимизация условий, положений и политики дисконтирования 16:30–17:00 Подведение итогов и формирование списка мероприятий В наши дни существуют фирмы, специализирующиеся на ценовом консалтинге, но услуги их могут сильно различаться. Atkin и Skinner [7] в 1976 году заявляли, что не следует использовать сторонних консультантов для принятия ценовых решений. Один из авторов этой книги в 1979 году впервые назвал себя «ценовым консультантом». Становление ценового консалтинга с того времени подробно изложено в статье [11]. По нашим оценкам, в мире существует около 2000 консалтинговых компаний, специализирующихся на ценообразовании. Подавляющее большинство из них – это частные специалисты или маленькие фирмы. Исходя из среднего количества сотрудников – 5 человек и среднего дохода на одного сотрудника – $200 000, можно сказать, что глобальный рынок услуг ценового консалтинга дает доход примерно $2,1 млрд, то есть доход за последние 10 лет вырос втрое. Вероятно, этот рынок продолжит рост. Компания Simon-Kucher & Partners – лидер мирового рынка услуг ценового консалтинга. Ее доля глобального рынка – примерно 15 %, в 2017 году доход составил $300 млн. Услуги ценовых консультантов – это широкий спектр от краткосрочных семинаров до многомесячных проектов. В табл. 9.2 представлена программа однодневного семинара по прайс-менеджменту для компании строительных материалов. Подготовка к семинару включала внутренний анализ цен и краткий опрос клиентов. Кроме того, были проведены пять бесед с менеджерами и торговыми представителями на темы семинара. Целью было ознакомить 15 участников семинара с методами современного ценообразования и черновиками конкретных списков мероприятий. Консалтинговые проекты в прайс-менеджменте могут длиться месяцами. На рис. 9.5 представлен график проекта по ценовому консалтингу для частного банка. Проект охватывает все аспекты прайс-менеджмента, от анализа текущей ситуации до разработки системы контроля, и рассчитан на 10 месяцев. Работа включала в себя масштабный опрос клиентов. 9.2.3.5. Программное обеспечение для ценообразования Вследствие повышенной сложности и сопутствующих процессов большинство компаний применяют индивидуально разработанные решения в операционном прайс-менеджменте. Несмотря на это, с 1980-х годов на рынке предлагается целый ряд пакетов ПО по ценообразованию. В последние 10 лет специалисты по ПО начали обслуживать разные отрасли индивидуально. Большая часть ПО поставляется из США. Рынок подразделяется на решения для оптимизации цен и управления ими (POM) и решения «конфигурирование заказа, расчет стоимости и коммерческое предложение» (CPQ). Решения POM предлагают функционал для анализа и назначения цен и внедрения систем дисконтирования, условий и предложений. Они применяются главным образом в компаниях, которым нужно регулярно принимать ценовые решения, у которых широкий ассортимент или большое количество клиентов. Решения CPQ используются в продажах для автоматизации процесса формирования и назначения цен по комплексным предложениям, например, включающим большое количество товаров из разных продуктовых линеек. Рынок ПО ценообразования сильно фрагментирован, ему не хватает официальной стандартизации, как в решениях АСУТП или CRM. Среди ключевых поставщиков решений POM – PROS, Vendavo и Zilliant. Есть также несколько поставщиков, например, Navetti, Syncron и Servigistics, которые делают упор на рынок послепродажного обслуживания. Рынок решений CPQ фрагментирован еще сильнее. Помимо крупных поставщиков АСУТП, например, SAP и Oracle, на рынке присутствуют такие известные компании, как BigMachines и IBM Sterling. Один из секторов, не охваченных поставщиками POM, это розничная торговля, где конкурентно-ориентированное ценообразование, а также реализация и оценка ценовых промоушн-акций – это ключевые задачи. В данном секторе работает ряд специалистов из ProfitLogic, KSS Retail, Upstream Commerce или Boomerang Commerce, которые предлагают решения для онлайновой розничной торговли. В банкинге есть специализированные поставщики – такие как Nomis и Earnix. Некоторые из поставщиков POM начинали с ПО управления доходами для авиакомпаний. Среди них американская фирма PROS, основанная в 1985 году. Управление доходами по-прежнему является одним из главных направлений фирмы, системы которой теперь применяются в гостиничном бизнесе, туризме, аренде автомобилей и похожих отраслях. И в этих отраслях также есть специальные эксперты. Компания Sabre Airline Solutions играет не менее важную роль для авиакомпаний, как и их внутренние ИТ-подразделения. IDeaS и Easy RMS специализируются на отелях. Эти компании пользуются методами, разработанными на основе исследования операций и науки управления. Они ставят во главу угла метод и технологию и защищают свои программные компоненты патентами. Только у PROS есть 9 патентов в США и еще 27 патентов ожидают регистрации [12]. Важный аспект стандартных решений – это интеграция с комплексными системами АСУТП от SAP или Oracle. Например, существует маркетинговое партнерство между SAP и поставщиком ПО ценообразования Vendavo. Недавно произошла интеграция с системами CRM, такими как Salesforce или Microsoft Dynamics CRM. Это, в частности, применимо к решениям CPQ, которые продажники могут использовать напрямую. 9.2.3.6. Машинное обучение в ценообразовании Искусственный интеллект (ИИ) всегда вызывает энтузиазм в СМИ. Но основная идея ИИ – это всего лишь разработка систем автоматизации процессов анализа и принятия решений, которые обычно осуществляют эксперты-люди. Один из способов этого добиться называется машинное обучение (МО), набор алгоритмов, который «самообучается», приобретая экспертные знания на основе данных наблюдений, особенно ретроспективных. Машинное обучение уже некоторое время является предметом теоретических исследований и применяется в бизнесе. Классический пример – это превосходные поисковые движки для рекомендаций клиентам. Эксперт больше не должен постоянно перепрограммировать системы для увеличения объема покупок и одновременного предложения разных товаров – система обновляется сама на основе анализа потребительского поведения. Список возможных областей применения впечатляет: это ценообразование, маркетинг и продажи. МО-алгоритм можно применять, среди прочего, для автоматизации оценки лидов, подсчета ценовой эластичности, прогнозирования потребительского выбора, оценки готовности платить, рекомендаций по скидкам, прогнозирования оттока клиентов, оценки вероятной успешности сделки по определенной цене и определения наилучших целевых объектов для промоушна. Хотя на первый взгляд всё это выглядит многообещающе, компании должны иметь в виду четыре основные подспудные проблемы МО. • Применимость. Не все проблемы можно решить с помощью машинного обучения. Машины помогают решать задачи, связанные с прогнозированием целевых переменных, определением паттернов, классификацией единиц информации и установлением причинных зависимостей. Но если в данных отсутствует информация, необходимая машине для формулирования заключения, МО не обеспечит значимой исходной информации. Этот недостаток аналогичен применению эконометрических методов при изменении исходной ситуации. • Экспертность. Хотя на рынке появляется всё больше готовых пакетов ПО и облачных услуг, по-прежнему самые перспективные заключения на основе огромного количества данных, собранных компанией, должен делать инженер-программист по обработке данных. Помимо агрегации данных, выявления аномалий и очистки данных, эксперты-люди занимаются жизненно важным направлением под названием «конструирование признаков». Это применение предметных знаний для рекомбинирования или реинтерпретации переменных, использующихся для обучения машины. Самые крошечные вариации в том, как признаки интерпретируются и вводятся в машину, могут оказать серьезное воздействие на прогностическую ценность модели. • Наличие данных. Чтобы обучать МО-алгоритм, необходимые данные должны быть в наличии. Для решения задач ценообразования обычно требуются наблюдения на уровне транзакций. Если проблемы более специфичны, здесь часто требуется дополнительная информация, сбор которой необязательно ведется по умолчанию. Например, как может компания выстроить прогностическую модель «успех-неудача» в В2В, если она не владеет информацией о ценах, по которым не удалось получить заказов? Далее, МО зачастую применяется на базе ретроспективных данных, что влечет за собой две проблемы. Во-первых, обучаемая модель может в итоге начать повторять ошибки прошлого. Во-вторых, нет возможности учесть факторы, которые имеют значение в стратегической перспективе, но в настоящее время отсутствуют в массиве данных. На практике приходится применять дополнительные правила и ограничения, чтобы модель выдавала желаемые результаты. • Долгосрочные эффекты автоматизированного назначения цен. Оценить их сложно. Приведет ли повышение краткосрочной маржи, основанной на готовности клиентов платить, к ослаблению их лояльности или к негативному воздействию на ценовой имидж в долгосрочной перспективе? Согласятся ли продажники со скидками, рекомендованными машиной? Как отреагируют клиенты на регулярные изменения цен на рынке, где привыкли к ценовой стабильности? Чтобы избежать негативных побочных эффектов и долгосрочных резонансов, важно тщательно протестировать систему, внедрить четкую систему мониторинга, не ограничивающуюся одним-двумя ключевыми KPI, которые она оптимизирует, предусмотреть возможность ручного вмешательства и установить автоматические ценовые защитные механизмы (например, пределы изменения цены), чтобы машина не смогла принять ценовое решение, которое нанесет долговременный ущерб. Многие поставщики ПО для ценообразования предлагают решения, куда включено машинное обучение. Мы различаем два типа поставщиков МО. Первые предлагают динамические решения по ценообразованию и промоушну на основе машинного обучения. Они часто ориентированы на конкретную индустрию, например, розничные продажи, электронную коммерцию или управление доходами. Среди них – Boomerang Commerce, Blue Yonder, Smart Price и Perfect Price. Эти компании оказывают услуги по интеллектуальной обработке данных и строят модели машинного обучения, адаптированные под клиента. Целевая отрасль второго типа поставщиков – это В2В. Они предоставляют машинное обучение для расчета ценовых рекомендаций под конкретные сделки для департаментов продаж. Среди примеров – Zilliant, PROS, and Price f(X). Мы наблюдаем самые разные степени прозрачности алгоритмов и качества машинных прогнозов. Компания, разумеется, может построить модель машинного обучения, адаптированную под собственную модель ценообразования. Это обеспечивает компании больше контроля и прозрачности, однако внедрение такой модели требует гораздо большего уровня экспертности и прилагаемых усилий. 9.2.4. Роль CEO компании Основная задача CEO – поддерживать и увеличивать акционерную стоимость. Эта задача обычно является синонимом долгосрочной максимизации прибыли. Цена – необычайно эффективный драйвер акционерной стоимости (см. главу 2). Поэтому ответственность за цены и их реализацию должна делегироваться на самые высокие уровни руководства и в конечном счете – CEO. Конечно, очевидно, что глава крупной компании не может принимать решения по каждой из цен – а в некоторых компаниях этот показатель исчисляется сотнями и тысячами. Точно так же CEO не может лично заверять каждую договоренность о цене, не говоря уже об участии в переговорах. Так какова должна быть истинная роль CEO в прайс-менеджменте? В следующем списке (далеко не исчерпывающем) перечислены задачи CEO [13]. Таблица 9.3. Вовлеченность CEO и результаты • Повышение осознания важности цен. • Установление четких целей. • Реализация стратегии и ценового позиционирования. • Организация систематического процесса ценообразования. • Выстраивание культуры предотвращения ценовых войн. • Достижение ценового лидерства (если возможно). • Формирование ценовой дисциплины. • Использование цен во взаимодействии с инвесторами. В последние годы мы наблюдали сильный рост и заинтересованности, и вовлеченности глав компаний в проблемы прайс-менеджмента [14]. В Глобальном исследовании цен Simon-Kucher & Partners [8] 82 % респондентов ответили, что участие топ-менеджеров в ценообразовании в последние годы возросло. И этот процент варьировался очень незначительно по странам и отраслям. Ключевой момент, однако, заключается в том, что компании, где CEO занимаются прайс-менеджментом, выходят на средний операционный EBITDA 15 % против всего 11 % у компаний, где CEO не вовлечен в процесс. Влияние цен и успешность повышения цен также бывают выше. Выводы представлены в табл. 9.3. Можно утверждать, что во всех случаях без исключения участие CEO в прайс-менеджменте улучшает операционные и финансовые результаты. Первопроходцем в этой области был Джек Уэлч, CEO General Electric (GE) с 1982 по 2001 годы. Это он учредил высшую должность в области прайс-менеджмента: так называемого Chief Pricing Officer, директора по ценообразованию. Его преемник Джеффри Иммельт подхватил инициативу. Как он признавался в беседе с одним из авторов этой книги, ценовая дисциплина после этого существенно повысилась. Лучше, чем прежде, удавалось выходить на заранее определенные целевые уровни цен. Директора по ценообразованию также брали на себя задачи в области обучения и подготовки персонала, и после этого специалисты по продажам GE стали лучше подготовлены к ценовым переговорам. В общем, эта инициатива превзошла все ожидания. Высказывание знаменитого инвестора Уоррена Баффета о том, что «единственное важное решение при оценке бизнеса – власть над ценами», привлекло внимание инвесторов и CEO к теме цен[17]. Ему вторил бывший CEO Microsoft Стив Балмер: «Эта вещь, которая называется „цена“, действительно очень и очень важна. Я считаю, что многие люди до сих пор недостаточно о ней думают. Есть множество стартапов, и вся разница между теми, кто добивается успеха, и теми, кто не добивается, заключается в том, что первые научились делать деньги, потому что немало времени обдумывали вопросы дохода, цен и бизнес-модели. Я считаю, что в целом этим вещам не уделяется должного внимания» [15]. Теперь CEO чаще высказываются о прайс-менеджменте в своих компаниях во время интервью, выездных презентаций, торговых ярмарок и ежегодных встреч с акционерами. Мы также можем засвидетельствовать, что топ-менеджеры выражают повышенный интерес к проектам ценового консалтинга. Постоянное руководство реализацией цен и формированием сопутствующей культуры – это задачи, которые CEO не может никому делегировать. Мы подтвердим это целым рядом высказываний топ-менеджеров по означенным темам и задачам. Эти топ-менеджеры имели одну особенность: все они руководили или руководят компаниями с высокой рыночной капитализацией. О целях, позиционировании, доле рынка и уклонении от агрессивных действий: • Норберт Райтхофер, CEO BMW (2006–2015): «Высокие скидки несовместимы с категорией „премиум“. Это плохо и для бренда, и для бизнеса. Поэтому мы решили не оборонять свою долю рынка Германии любой ценой. Прибыль важнее объемов продаж». • Венделин Видекинг, CEO Porsche (1992–2009): «Наша политика – это стабильные цены для защиты своего бренда и недопущения спада цен на подержанные автомобили. Когда спрос идет вниз, мы сокращаем производство, но не цены». Это замечание полностью соответствует стратегии, позиционированию и политике брендирования; на ней выстроена целая организация с четкими руководящими принципами прайс-менеджмента. Porsche строго карает за нарушения этих принципов, увольняя менеджеров, не сумевших им следовать (например, на рынке США).